Direct interaction between Nrf2 and p21(Cip1/WAF1) upregulates the Nrf2-mediated antioxidant response.

نویسندگان

  • Weimin Chen
  • Zheng Sun
  • Xiao-Jun Wang
  • Tao Jiang
  • Zheping Huang
  • Deyu Fang
  • Donna D Zhang
چکیده

In response to oxidative stress, Nrf2 and p21(Cip1/WAF1) are both upregulated to protect cells from oxidative damage. Nrf2 is constantly ubiquitinated by a Keap1 dimer that interacts with a weak-binding (29)DLG motif and a strong-binding (79)ETGE motif in Nrf2, resulting in degradation of Nrf2. Modification of the redox-sensitive cysteine residues on Keap1 disrupts the Keap1-(29)DLG binding, leading to diminished Nrf2 ubiquitination and activation of the antioxidant response. However, the underlying mechanism by which p21 protects cells from oxidative damage remains unclear. Here we present molecular and genetic evidence suggesting that the antioxidant function of p21 is mediated through activation of Nrf2 by stabilizing the Nrf2 protein. The (154)KRR motif in p21 directly interacts with the (29)DLG and (79)ETGE motifs in Nrf2 and thus competes with Keap1 for Nrf2 binding, compromising ubiquitination of Nrf2. Furthermore, the physiological significance of our findings was demonstrated in vivo using p21-deficient mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Does Nrf2 contribute to p53-mediated control of cell survival and death?

In response to oxidative stress, the transcription factor Nrf2 is upregulated and controls activation of many genes that work in concert to defend cells from damages and to maintain cellular redox homeostasis. p53 has been regarded as the guardian of the genome through its pro-oxidant and antioxidant functions. Under low levels of reactive oxygen species (ROS), "normal" amounts of p53 upregulat...

متن کامل

Inhibition of nuclear factor-erythroid 2–related factor (Nrf2) by caveolin-1 promotes stress-induced premature senescence

Reactive oxygen species (ROS) can induce premature cellular senescence, which is believed to contribute to aging and age-related diseases. The nuclear erythroid 2 p45-related factor-2 (Nrf2) is a transcription factor that mediates cytoprotective responses against stress. We demonstrate that caveolin-1 is a direct binding partner of Nrf2, as shown by the binding of the scaffolding domain of cave...

متن کامل

Nrf2-ARE stress response mechanism: a control point in oxidative stress-mediated dysfunctions and chronic inflammatory diseases.

Nrf2, a redox sensitive transcription factor, plays a pivotal role in redox homeostasis during oxidative stress. Nrf2 is sequestered in cytosol by an inhibitory protein Keap1 which causes its proteasomal degradation. In response to electrophilic and oxidative stress, Nrf2 is activated, translocates to nucleus, binds to antioxidant response element (ARE), thus upregulates a battery of antioxidan...

متن کامل

Evidence of a functional role for p21WAF1/CIP1 down-regulation in synergistic antileukemic interactions between the histone deacetylase inhibitor sodium butyrate and flavopiridol.

The functional significance of disruption of p21(WAF1/CIP1) induction by flavopiridol (FP) in human leukemia cells (Jurkat) exposed to the histone deacetylase (HDAC) inhibitor sodium butyrate (SB) was investigated. Coexposure of leukemic cells to FP blocked SB-mediated induction of p21(WAF1/CIP1) and resulted in a marked increase in mitochondrial injury, activation of procaspases-3 and -8, Bid ...

متن کامل

Nrf2 and p21 regulate the fine balance between life and death by controlling ROS levels.

On the other hand, p21 facilitates apoptotic processes when DNA damage is beyond repair. 8 Furthermore, cellular stress that does not damage DNA, such as hypoxia or exposure to ribonucleotide biosynthesis inhibitors, may also induce p53-dependent expression of p21. 7 In our recent study, 9 we have revealed a novel mechanism by which p21 protects cells against oxidative stress through upregula-t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular cell

دوره 34 6  شماره 

صفحات  -

تاریخ انتشار 2009